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Outline

• What is the equation of state and why should we care?

• Theoretical basis

• Complete and incomplete EOS

• Predicting the EOS

• Experimental measurements

• Corrections, limits, and other issues
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Nomenclature for thermodynamics

Mass density ρ and specific volume v: ρ = 1/v.

intensive extensive

p pressure e internal energy
T temperature s entropy

Extensive quantities: can integrate over system to find total.

Convention here: use specific quantity (per mass).
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What is the equation of state?

compression

block of matter

heat

What’s the pressure?

Material-dependent property, relating thermodynamic

potential and its natural parameters, e.g. de = Tds − pdv.
EOS is the relation e(s, v) for a material.

Derivatives and other functions of EOS give other quantities:

p, T , sound speed c2, heat capacity cv, ...

Perfect gas EOS:

p = nkBT p = (γ − 1)ρe
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Uses of the equation of state

Hydrocode / continuum mechanics simulations of impact-type

problems:

Cross-section of armor after perforation by projectile.
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Uses of the equation of state

Divide components into small cells, assume conditions are

spatially uniform in each. Need material properties for

simulations.
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Uses of the equation of state

Radiation-driven implosions, e.g. NIF hohlraum-driven fusion

capsule:

Source: J. Lindl, “Inertial confinement fusion,” Springer (1998).
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Simulation of dynamic loading problems

Initial value problem: given {ρ, ~u, e}(~r, t0) over some region

{~r} ∈ R, what is {ρ, ~u, e}(~r, t > t0)?

Continuum equations (Lagrangian, neglecting heat conduction):

∂ρ(~r, t)

∂t
= −ρ(~r, t)div ~u(~r, t)

∂~u(~r, t)

∂t
= − 1

ρ(~r, t)
grad p(~r, t)

∂e(~r, t)

∂t
= −p(~r, t)div ~u(~r, t)

Boundary conditions p(~r, t) and/or ~u(~r, t) for {~r} ∈ dR.

Use EOS p(ρ, e) – derived from e(s, v) – to complete equations

and allow integration to proceed.
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Structure of the equation of state
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Details depend on the material composition.
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‘Moderate’ pressure and temperature
Geophysics, hypervelocity impact, terrestrial explosions, ICF, ...

−GPa (pspall) < p < PPa (Gbar); ∼ 10K < T < MeV; ps < t < Gyr

e.g. Cu:
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e(ρ, T ) = ecold(ρ) + eion-thermal(ρ, T ) + eelectron-thermal(ρ, T )
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Cu phase diagram

SESAME #4:
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Energy, EOS, and phase diagram

Given e(ρ, T ) – for a given atomic arrangement – can construct

EOS using 2nd law of thermodynamics:

de = Tds − pdv ⇒ s(v, T ) = s(v,0) +
∫ T

0

dT ′

T ′
∂e(v, T ′)

∂T ′

from which calculate f(ρ, T ) = e(ρ, T ) − Ts(ρ, T ) ⇒ EOS for

this phase.

s(v,0): ‘configurational entropy’ – may vary between phases.

At any p, T , equilibrium phase has lowest Gibbs free energy

g = e − Ts + pv (natural parameters g(T, p) as dg = −sdT + vdp)
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Phase diagram: Fe

Different crystal structures occur in the solid state:
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Multiphase EOS: Fe
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Source: J.T. Gammel, T-1.
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Multiphase EOS: Fe
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Thermodynamic completeness

Complete EOS: thermodynamic potential expressed in natural

parameters

e(s, v), f(T, v), g(T, p), h(s, p)

Can derive any thermodynamic parameter from a complete

EOS.

Continuum mechanics:

∂ρ/∂t = −ρdiv ~u, ∂~u/∂t = −(1/ρ)grad p, ∂e/∂t = −pdiv ~u

only require p(ρ, e).

Also: easiest to deduce p(ρ, e) from mechanical measurements.

Incomplete EOS: p(ρ, e) with no information about T .

‘SESAME’ EOS: e(ρ, T ) and p(ρ, T ): a complete EOS – but

may be inconsistent.
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Predicting the EOS

e(ρ, T ) = ecold(ρ) + eion-thermal(ρ, T ) + eelectron-thermal(ρ, T )

– solve for electron states for a given set of ion positions (Dirac or
Schrödinger equation).

Electrons are indistinguishable fermions: quantum many-body problem...

17



Quantum many-body problem

Ground state of collective wavefunction Ψ: ĤΨ = E0Ψ.

Numerical quantum mechanics: based on single-particle

wavefunctions {ψi}. Fermions: antisymmetric with respect to

particle exchange (Pauli exclusion principle), e.g. for 2-particle

wavefunctions Ψ(1,2) = −Ψ(2,1), can be satisfied if

Ψ(1,2) =
1√
2
[ψ1(1)ψ2(2) − ψ2(1)ψ1(2)].

More generally,

Ψ(1,2, ...n) =
∑

χ
ε(χ)ψχ(i)(i) = detψi(j)

where ε is a permutation operator – ‘Slater determinant’

approach; in practice prohibitive in computer time.

Differences in the phase of the wavefunctions ⇒ correlation

effects: another complication.
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Local density approximation

Assume can approximate exchange and correlation by

modifying the potential energy contribution in the Hamiltonian

to include functions of the local electron density

n(~r) =
∑

i

ψ
†
i (~r)ψi(~r).

These functions are then calibrated against detailed exchange

and correlation calculations for simple systems e.g. uniform

electron gas.

Typical accuracy: a few percent in density at p = 0, T = 0.
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High temperature EOS
Below ∼1 eV: ion-thermal from phonons (Bose-Einstein) and
electron-thermal from band structure around Fermi surface (Fermi-Dirac).

Different ion positions (may be small effect: dominated by ρ); excited

electrons / ionization; band structure consistent with T . Treats plasma

seamlessly. Spherical atom model.
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Measuring the EOS
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Isobaric expansion: exploding wire in pressure vessel.

Isotherm: static presses (special case).

Hugoniot: locus of states accessible by a single shock wave

(can vary its strength).
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Static high pressure

gasket

diamond

load

pressure calibrant
e.g. ruby (fluorescence)

sample hydrostatic
fluid

Apply load at known temperature; measure pressure, mass density,
structure, etc. Diagnostics: x-ray diffraction, optical properties.

p to ∼400 GPa, steady T to 2500 K, higher by laser heating.
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Steady shock waves

speed u
s

speed u1

speed u1

undisturbed material
(stationary: u   = 0)

0

direction
of motion

shock wave
piston

shocked material

Rankine-Hugoniot relations (conservation laws):

u2
s = v2

0

p − p0

v0 − v
, up =

√

[(p − p0)(v0 − v)], e = e0 +
1

2
(p + p0)(v0 − v)

– 3 equations, 5 unknowns ⇒ measure 2 quantities to determine state on

shock Hugoniot.
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Shock wave experiments

– ways to launch and measure a steady shock:

• Impact experiments (gas gun, powder gun, electromagnetic

flyer, explosively-driven flyer, laser flyer)

• Detonation-driven shock

• Radiation-driven shock (nuclear explosion, laser hohlraum)

• Laser ablation

Aspect ratio: thin samples to preserve 1D region in center.
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Impact experiments

target
flyer position
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“Classical”: same material for both; measure uflyer = 2up and

us from transit time.
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Gas guns

e.g. two-stage light gas gun:

barrel

target / catch tank

piston
sabot, flyer

target

light gas
(hydrogen)

powder breech

diagnostics: flyer speed, flatness,
shock transit time, surface velocity
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Electromagnetic launcher

e.g. Z pulsed power machine:

and ablation
accelerate flyer
from surface

electrical
current flow

performed in a recess
in the panel wall

each experiment is

magnetic pressure

experiments on each
two or three

two or four panels;
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Laser flyer

transparent
substrate

carbon (0.5)

aluminum (0.5)
alumina (0.5)

aluminum (4.0)

coatings (thickness in microns)

laser
pulse

flyer
(up to ~1mm thick)

acceleration
by expanding
plasma

Design: D.L. Paisley, P-24
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Laser flyer

spacer ring

(dried coffee)

working fluid

(molasses)

10 mm

substrate

(soda-lime glass)
flyer

(copper)

assembly

(view through substrate)
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Radiative ablation
Material ablation drives shock wave by reaction and plasma pressure.
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Radiation source: nuclear explosion, laser hohlraum, laser ablation.
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Other shock diagnostics

surface velocimetry, radiography, transient x-ray diffraction
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Surface velocimetry

Doppler shift of reflected laser light.

Example velocity history as shock reaches surface:
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Transient x-ray diffraction

Si crystal, (100) orientation, 40 µm thick by 10 mm across:
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Quasi-isentropic compression

drive beam
illuminates target
to generate 
dynamic load

plasma blowoff
from surface
supports compression

loading wave

sample

compressed state

window
(optional)

velocimetry
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Quasi-isentropic compression

Si, TRIDENT shot 15018:
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Shock Hugoniot data
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Empirical mechanical EOS
Functional fit to us – up data, e.g. Steinberg polynomial:

us = c0 +

n
∑

i=1

si

(

up

us

)i−1

up,

R-H relations for states on the Hugoniot. Additional assumption to calculate
states off-Hugoniot: Grüneisen approximation,

p(ρ, e) = pref(ρ) + Γ(ρ)
[

e − eref(ρ)
]

.

Thus

p(ρ, e) =
F (ρ, e)

H2(ρ, e)
+ [Γ0 + bµ(ρ)] ρ0e

where µ(ρ) = ρ/ρ0 − 1,

F (ρ, e) = ρ0c
2
0µ {1 + µ [(1 − Γ0/2) − µb/2]}

H(ρ, e) = 1 + µ − µ

[

n
∑

i=1

si

(

µ

µ + 1

)i−1
]

(thermodynamically incomplete).
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Shock Hugoniot fit

Acetone:
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Accuracy of empirical EOS

Shock Hugoniot for solid and porous Al; empirical EOS fitted

to us – up; Γ(ρ) estimated from slope of us – up:
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Accuracy of empirical EOS

Shock Hugoniot for solid and porous Al; empirical EOS fitted

to us – up; Γ(ρ) adjusted to reproduce porous Hugoniot points:
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Accuracy of theoretical EOS

Shock Hugoniot for solid and porous Al; theoretical EOS uses

ab initio quantum mechanics:
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Limitations and current research

• Thermodynamic equilibrium

– electronic states: ‘non-LTE effects’ (below ns)

– atomic configuration: phase change dynamics (ps to

Myr)

• Stress tensor: decomposition into EOS and stress deviator
not always valid.

• Measurement of temperatures in shock experiments is

difficult – how to test theoretical EOS?

• Accuracy of quantum mechanical EOS predictions,
especially for f-electron materials (lanthanides and

actinides).
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Stress in continuum mechanics

strain (including compression)

block of matter

heat

What’s the stress? (tensor)

Strain tensor e(~r), stress tensor τ(ρ, T, e) – generalized EOS.

Deviatoric decomposition:

e = µI + ε, τ = −pI + σ; µ ≡ 1

3
Tr e, p ≡ −1

3
Tr τ

Assumption that scalar properties are independent: p(µ, T ),

σ(µ, T, ε).
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Uniqueness of the EOS

QM prediction of stress tensor in Be for different elastic strains:
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D.C. Swift and G.J. Ackland, Appl. Phys. Lett. 86, 6 (2003).

– at the end of the day, the EOS may not really exist!
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